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ABSTRACT

Classes of "ribbonlike" planar shapes can be de-
fined by specifying an arc, called the spine or axis,
and a geometric figure such as a disk or line segment,
called the generator, that. "sweeps out" the shape by
moving along the spine, changing size as it moves.
Shape descriptions of this type have been considered
by Blum, Brooks, Brad-, and others. This paper con-
siders such descriptions from the standpoints of both
generation and recovery (i.e. given a shape generated
in this way, to determine the axis and generation rule
that gave rise to it), and discusses their relative
advantages and disadvantages.
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1. Introduction

A number of authors have considered methods of describing

ribbonlike planar shapes in terms of an arc called the "axis"

or "spine" about which the shape is locally symmetric. This

paper considers a number of such shape descriptions from the

standpoints of both generation (of the shape, given the axis) and

recovery (of the axis, given the shape), and discusses their

relative advantages and disadvantages.

From the generative standpoint, we are given the spine

and a geometric figure such as a disk or line segment, called

the generator, that "sweeps out" the shape by moving along the

spine, possibly changing size as it moves. More precisely,

we assume that the generator contains a unique reference

point - e.g., the center of the disk or the midpoint of the

line segment. At each point P of the spine we place a copy

of the generator so that its reference point coincides with P.

The union of all these copies, which may be of different sizes,

is the generated shape.

An early use of this approach to define shapes, due to

Blum [1,2], used a disk as generator. Blum called this

representation the "medial (or symmetric) axis transformation".

Blum was more interested in description (i.e., recovery) than

in generation; not surprisingly, it turns out that Blum descrip-

tions are uniquely recoverable. In fact, Blum's method was

developed to describe arbitrary shapes that are not necessarily

ribbonlike, usina spines (or "skeletons")that are not neces-

sarily simple arcs; but in this paper we shall consider only

the case where the spine is a simple arc.



More recently, Brooks [3) defined a class of shapes called

"generalized ribbons", using a line segment as generator and

requiring it to make a fixed angle with the spine. [Generalized

ribbons are two-dimensional versions of "generalized cylinders"

(sometimes called "generalized cones"), which were introduced

in the early 1970's by Binford [4] and his students. In a

generalized cylinder, the spine is a space curve and the

generator is a planar figure that moves along the spine,

making a constant angle with it and changing size as it moves,

to sweep out a three-dimensional shape.] Brooks' definition

is more flexible than Blum's from a generative standpoint,

but as we shall see, it does not allow unique recovery.

Still more recently, Brady [5] introduced a shape repre-

sentation based on "local symmetry". Here the "generator" is

also a line segment, but it is required to make equal angles

with the sides of the shape, rather than making a fixed angle

with the spine. Brady's primary interest was in description,

not in generation; not surprisingly, it turns out that his

descriptions are usually recoverable, whereas generation is

not straightforward.

We shall refer to these methods of defining or describing

shapes as "axial representations", since they all involve a

spine or axis which is a planar arc. Our interest in this

paper is in the use of these methods to define "ribbonlike"

shapes, and we shall consider various ways of restricting

them so that they do indeed tend to define such shapes.
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However, we make no claim that these classes of shapes coincide

perceptually with the class of ribbonlike shapes. For brevity, we

shall call the classes of shapes defined by these methods "Blum

ribbons", "Brooks ribbons", and "Brady ribbons", respectively.

We shall discuss these classes of shapes from the standpoint

of generation as well as of recovery, even though their inventors

may not have had generation in mind.
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2. Some general observations

Before considering specific classes of axial representa-

tions, we make a few general observations about them, and in-

troduce some general terminology and notation.

Figure 1 shows a piece of spine (labeled S) and one posi-

tion of the generator. We shall usually assume that S is a

simple, rectifiable arc with a tangent at every point, and that

the generator is a simply connected set. The reference point

of the generator, labeled 0 in the figure, will be called its

center, and the generator whose center is at position 0 on S

will be denoted by GO. Let R (for "ribbon") be the union of

all the Go's for all OES. Since S and the G's are connected,

so is R. (One can get from any point P of any GO  to any
1

point Q of any G0 by moving within G from P to 1, then
2 1

along S to 02P then within G 0from 02 to Q.)
02 2

The G's are all geometrically similar figures; they all

have the same shape, and differ only in size. We shall mea-

sure the size of GO by its semidiameter (or "radius") rO. We

shall usually assume that ro , as well as the orientation of

0 Go , vary continuously (and differentiably) as 0 moves along S.

Since we want R to look ribbonlike, it is reasonable to

require that as G moves along S, it should not intersect G's

0 located in other parts of S. If such intersections were indis-

criminately allowed, we could "paint out" shapes that were very

nonribbonlike, as illustrated in Figure 2. However, it is not

always obvious how to define this concept of nonselfintersection,



since when 0 is close to 02, GO and GO may have to inter-
11 2

sect. We shall consider this issue further when we discuss

specific classes of representations.

A closely related requirement, based on our desire that

R look ribbonlike, is that the G's should not contain one

another. By requiring this, we insure that the G's centered

at every point of S have some influence on the appearance of R,

so that the shape of R is generally "similar" to that of S

(except that R is thick). Figure 3 shows examples of what

could happen if we did not impose this restriction. We shall,
I

in fact, impose the stronger requirement that the Go s are all

maximal -- in other words, no G0 is strictly contained in any

G-shaped region that is contained in R. It follows that every

G0 contains at least two border points of R; if it did not,

we could expand it slightly to obtain a larger G-shaped region

still contained in R, contradicting the maximality of GO . Con-

versely, note that every border point of R is in some G since

R is the union of the Go s.

Let 0' and 0" be the endpoints of S. Those parts of the

border of R that are in Go, or GO,,, but not in any other GO ,

will be called the ends of R. The remaining parts of the border

of R will be called the sides of R. These concepts are illus-

trated in Figure 4. Since S is smooth (i.e., differentiable),

and since the size and orientation of G0 vary smoothly as 0 moves

along S, it is not hard to see that the border of R must also be

smooth. We shall denote the border of R by bR.



We have not specified here that G be symmetric about

its center 0, but in the examples we shall consider this

will in fact be the case (G will be a disk and 0 its center,

or G will be a line segment and 0 its midpoint). Symmetry of

G tends to make R "locally symmetric," but it does not imply

any type of global symmetry, since the spine may be curved, and

the orientation of G relative to the spine may vary.

I
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3. Ribbons generated by disks ("Blum ribbons")

In Blum's medial axis representation, the generator is a

disk with its center on the spine. We shall call a shape

generated by Blum's method a "Blum ribbon."

Proposition 3.1. Let R be simply connected and let bR be

smooth; then any maximal disk D contained in R is tangent to

bR '

Proof: D must touch bR? say at P. If D were not tangent to

bR at P, it would cross bR and so contain points not in R,

contradiction. Io

Proposition 3.1 holds not just for disks, but for any class of

shapes that have smooth borders.

Proposition 3.2. If R is a Blum ribbon, every maximal disk D

contained in R is one of the G's (and in particular, has its

center on S); thus the set of maximal disks is the same as the

set of G's.

Proof: Let D be tangent to bR at P. As pointed out in Section

2, P must be contained in some Go, and any G0 is maximal; hence

by Proposition 3.1 G too is tangent to bR at P. Thus, D and

G are both tangent to bR at P, and since both are maximal,

they must be identical. !

Theorem 3.3. If R is a Blum ribbon, the spine and set of gen-

erators of R are uniquely determined.



Proof: Given R, for every PEb we can construct the set of
R

disks tangent to bR and contained in R. Let D be the larg-

est of these disks, so that D is a maximal disk. By Proposition

3.1, D PEb } are all of the maximal disks. By PropositionP R

3.2, this is the same as the set of generators GO and the spine

is the locus of their centers. I
We thus see that Blum ribbons are very well behaved from

the standpoint of recoverability. However, they are more limited

or harder to deal with in other respects. A serious limitation is

that a thick Blum ribbon cannot have points of high positive

* (=convex) curvature on its border. For example, the shape

shown in Figure 5a cannot be a Blum ribbon; the set of centers

of its maximal disks is evidently not a simple arc. [On the

aother hand, points of high negative curvature are allowable,

as Figure 5b shows.]

There are several ways to define non-self intersection for

Blum ribbons. One approach is to require that the sides don't

intersect themselves (or each other). To define this concept

more precisely, note that by the proof of Theorem 3.3, there is

a one-to-one correspondence between the points P on a side

of R and the points 0 on the spine; thus if the side intersects

itself, two different O's will correspond to the same P. From

a purely generative standpoint, it would be more appropriate

to define non-self intersection in terms of the generators

themselves; but it isn't obvious how to do this. For ribbons

generated by straight line segments, we could simply require

that no two generators intersect; but we cannot require this



in the case of disk generators, since disks having centers

sufficiently close together on the spine must intersect as

long as their radii are bounded away from zero. Another

possibility would be to require that whenever two generators

intersect, their intersection contains part of the spine;

but this doesn't work either, since as Figure 6 shows,

when the axis is curved, two generators that just touch

do not touch on the spine. A better definition seems to

be the following: Let S be the set of centers of all the

generators that intersect any given generator G; then S

is an arc. This rules out cases like those shown in

Figures 7 and 8. (Figure 7 is ruled out in any case because

the generators are not all maximal disks; but Figure 8 is

not ruled out by nonmaximality.) Note that Figure 7 also

shows that thick Blum ribbons are limited in the rate at

which they can turn. (A concave side of a Blum ribbon

can turn rapidly, as we saw in Figure 5b; an even simpler

example is that of a thick annulus with a very small inner

radius.)

Another approach to handling non-self-intersection would

be to regard the generator not as a disk, but as a pair

of radii terminating at the points where the disk is tangent

to the sides, as in the proof of Theorem 3.3, and to require

that no two of these radius pairs intersect. Unfortunately,

its not obvious how to define a generation process purely

in terms of radius pairs. The radius pair approach is
0
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more interesting from the standpoint of recovery [6]: If P

and P' are corresponding points on the two sides, the normals

at P and P' will intersect each other at a point 0 equidistant

from P and P', and this will be the first time that either of

these normals meets a normal that has not itself previously

met any other normal. In this case, 0 is the spine point

corresponding to P and P'.

e



4. Ribbons generated by line segments

Suppose next that the generator is a line segment with

its midpoint on the spine. In general, we can allow both

the length and the orientation of the segment (relative

to the spine) to vary as it moves along the spine. We shall

call a shape R generated in this way an L-ribbon. Note that

by maximality, the endpoints of any generator must both lie

on the border of R. In fact, the sides of R are just the

loci of the two endpoints, while the ends of R are just the

generators at the two ends of the spine.

It is trivial to formulate the non-selfintersection con-

straint for L-ribbons; we simply require that no two genera-

tors intersect. Thick L-ribbons are also not strongly limited

in their ability to turn, thanks to the fact that the slope of the

generator relative to the spine is allowed to vary; see Figure 9.

L-ribbons can also have points of high positive (or negative)

curvature on their borders; thus they are also more flexible S

in this respect than Blum ribbons. In fact, an L-ribbon can

have long protuberances on its border (Figures lOa-b), as long

as every point on the protuberance is visible from the spine

(Figures 10c-d). Since t1e slope of the generator is allowed

to vary as it moves along the spine, an L-ribbon can even have

protuberances with overhangs (Figure 10b). On the other hand,

some combinations of protuberances may be impossible even if

they are all visible from the spine, if the generators would

have to cross one another in order to generate them (Figure 10e).

0
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We see from Figure 10 that the class of L-ribbons is somewhat

too large; it contains shapes that no longer look like "simple"

ribbons. Some of these examples will be ruled out by the

restrictions that we will impose in the next two sections;

but the most basic example, Figure 10a, is not ruled out.

What seems to be the problem with Figure 10a is that when

we regard a shape as being axially generated, we prefer to

choose the spine so as to make the shape as elongated as

possible, i.e., so as to maximize the length of the spine

relative to the thickness of the shape. For example, a

rectangle can be generated as an L-ribbon (with generator

perpendicular to the spine) in two ways, as shown in Figures

lla-b, but we strongly prefer Figure lla because it has greater

elongatedness. Similarly, we prefer not to regard the pro-

tuberances in Figure 10 as being generated from the spine of

the main part of the shape, even when this can be done legally,

because the protuberances have much greater elongatedness with

respect to spines of their own (Figure 12).

Another serious difficulty with L-ribbons is that they

4 are highly ambiguous; the same shape can be generated in many

different ways, even using the same axis, as illustrated in

Figure 13. Of course, we strongly prefer the generation pro-

4 cess in Figure 13a over that in Figure 13b because the former

is much "simpler"; in Figure 13a both the size and slope of

the generator remain constant, while in Figure 13b they both

* vary. For arbitrary shapes, however, it would not be easy to

I1



formulate a canonical measure of simplicity; for example,

which would be preferred -- constant size and variable slope,

or constant slope and variable size? The tradeoff between

simplicity and degree of elongatedness is also far from

clear.

Figures 11 and 13 show that L-ribbons are not recover-

able; given the ribbon, the spine and set of generators are

far from uniquely determined. Even if we had reliable cri-

teria, based on simplicity and elongatedness, for preferring

one generation process over another, we would still not have

a constructive method of determining the best generation pro-

cess for a given ribbon.

We can greatly reduce, or even eliminate, the ambiguity of

L-ribbons if we require them to satisfy additional constraints.

In the next two sections we consider two such constraints:

(1) requiring the generators to make a fixed angle with the

spine, and (2) requiring them to make equal angles with the

sides of the ribbon.

4
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5. The fixed angle case ("Brooks ribbons")

Our first restriction on L-ribbons is that the generator

is required to make a fixed angle with the spine. We shall

call this class of L-ribbons "Brooks ribbons." We shall assume

here, for simplicity, that the angle between the generators

and the spine is always 900.

Fixing the angle has the undesirable consequence of limit-

ing the ability of Brooks ribbons to make sharp turns. In fact,

as Figure 14 shows, the thickness of a Brooks ribbon cannot

exceed twice the radius of curvature of its spine. (On turning

limitations for generalized cylinders see [7].) Brooks ribbons

also still allow some pathological cases, such as that in
I&

Figure 10a.

A shape can be globally ambiguous with respect to Brooks

ribbon generation, as we saw in Figure 11. However, the ambi-

guity in Figure 11 results from interchanging the roles of the

end and the sides. If we specify which are the sides, Figure 11

becomes unambiguous. Indeed, we have

Proposition 5.1. If the sides of the Brooks ribbon R are

straight and parallel, its spine and generators are uniquely

determined; in fact, the spine is the line parallel to the

sides and midway between them.

Proof: Let G be any generator, as illustrated in Figure 15.

Since 0 is the midpoint of GO , and the sides are parallel, by

similar triangles 0 is midway between the sides. Since this

is true for any 0, the spine must be the line parallel to the

sides and midway between them, and the generators must thus be

perpendicular to the spine and the sides.

° .°



Note that by Proposition 5.1, a parallelogram cannot be

a Brooks ribbon (in our restricted sense) unless it is a rec-

tangle; since the generator must be perpendicular to the sides,

it cannot generate the oblique ends (Figure 16). To generate

oblique parallelograms, we must allow the generator to make an

oblique angle with the spine. In what follows we shall ignore

what happens at the ends of a ribbon, and consider only the problem

of generating the parts of the sides away from the ends.

Let us now consider the case where the sides are straight but not

parallel. Evidently, we can generate (parts of) these sides by

taking the spine to be (part of) the straight line that bisects

the angle between the sides, as shown in Figure 17. Surpris-

ingly, however, this is not the only possibility. In fact, as

we shall next prove, a Brooks ribbon with straight sides need

not have a straight spine. It follows that Brooks ribbons are

(locally) ambiguous; specifying (pieces of) the sides does not

determine the spine.

In order to prove these assertions, consider first the gen-

eral case where the sides are arbitrary curves y=f(x) and y=g(x),

as shown in Figure 18. Let the (unknown) equation of the spine

be y=h(x). Let the generator centered at point (x0 ,h(x0 )) of

the spine hit the sides at pionts (xlf(xl)) and (x2 ,g(x2 )).

Since the midpoint of the generator is on the spine, we must S
____ 2  f (x I )+g (x 2 )

have x0= 2 and h(x0) I 2 The slope of the gen-0 2 nhx 0) 2
- 1 -x

erator at (x0 ,h(x0 )) is 1,x0 ' thus its equation is 0
0 h'x 0)y-h (x0 )

h' (x 0 ), so that the intersection points with the sides satisfy



x -x
f~xI) = h ) + h(x 0) and g(x 2 ) = h'(x 0) + h(x 0 )"

We can (in principle) solve these equations for x and 2 in

terms of x0 , h(x0 ), and h'(x 0 ), and substitute the results in

the equation x0 - 1 2 to obtain an equation involving only0 2

x0 , h(x0 ), and h(x0 ), i.e., a first order differential equation

for the unknown function h.

As an example, let the sides be (pieces of) straight lines,

say with equations y=0 and y=mx. Thus the intersection points

satisfy

0 x 0 - x 1 + h' ax 0 - x 2  h(x
h'(x 0) + h(x0 ) and h'(x0 + 0

This yields xI = x0 +h(x0 )h' (x0 )

and x2 (mh'(x0 )+l) = x0 +h(x0 )h'(x 0 )+2 01

Thus x0 = 2 . [x0+h(x)h (x0)] [1+ l+mh' (x0)

or 2(l+mh' (x0) )x0 = [x0+h(x0 )h' (x0) ] (2+mh' (x0 )]

which simplifies to

mx 0h' (x0) = (2+mh' (x0) )h(x0 )h' (x 0

Cancelling h' (x0) (clearly h is not a constant, so h' is not

identically zero) gives

mh(x 0 )h' (x0 )+2h(x 0) -mx0  0

so that h satisfies the differential equation

myy'+2y-mx = 0

.0 . . . " " i . - - - i ' -i , ' < . . , " - .' : ' , .- -.- ' -.. -.



The general solution to this equation is found as follows;*

Let y=xw; then the equation becomes (cancelling x) mw(w+xw')+

12 2w 2 1 WWI
2w-m=O. Thus xww'= -[m-2w-mw ]=[l---w J, or 1+ w0.

m m x 2+ 2_w 1m
It can be verified that m

ww I aw'+ bw'
2 2w -1 w+c w+d

m
2 2+i -+ i+ l-,/m i+•

where a = r , b = , c = , and d m

2/m +1 2m!+lm

dx .aw'dw .bw'dw
x w+c w+d

or logx + a log(w+c) + b log(w+d) = K

a b
or x(w+c) (w+d) = K'.

Since w=y/x and a+b=l, this becomes

(y+cx)a (y+dx) = K'.

If we raise both sides to the power 2/m 2+l/m, we get

c -d
(y+cx) (y+dx) K"

Noting finally that -d=l/c, we have
c 1 l/c K"

(y+cx) c (Y- 1 x) /
'/M + I + 1 i

where c =
m

The line bisecting the angle between the sides is a special

case of this solution. Indeed, the slope of this line is

tan(tan m) = m =c or -d, so that y=Mx is a solu-

tion for K"=O. However, there is also a large family of nonlinear

solutions. We have thus proved

Theorem 5.2. A Brooks ribbon with straight sides need not have

a straight spine. I

*I am indebted to Prof. Quentin Stout for providing this solution.
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To gain some intuitive insight into the nature of the non-

linear solutions, consider the case where the sides are perpen-

dicular, say y=O and x=O. This is not a special case of our

general formulation, since the second side is not of the form

y=g(x). However, we can derive the differential equation for

this case by the same method; it turns out to be yy'=x. (Note

that this can be obtained from our general differential equation

myy'+2y=mx bydividing through by m and letting m--.) The solu-

2 2
tion to this equation is simply y =x +C. For C#O, this is a

family of hyperbolas asymptotic to the line y=x, and for C=O

* we get the line y=x itself. If can be verified (see Figure 19)

- that if we draw any perpendicular to such a hyperbola, the dis-

tances along the perpendicular to the two axes are equal. Note

however, that the hyperbola spines do not yield the entire axes

as sides. For example, the hyperbola y =x -C shown ii Figure

19 cannot generate the interval [0,2C) of the x-axis.

Our straight-sided examples imply

Theorem 5.3. Specifying parts of the sides of a Brooks ribbon

does not uniquely determine the spine. d

It should be pointed out that in the straight-sided examples,

there is only one linear solution; all the other solutions

have higher degree. This suggests the possibility that in gen-

eral there might be a unique lowest-degree solution.* Unfor-

tunately, this is not so, as we can see from considering the case

*Another possibility is that there might in general be a unique
solution of lowest curvature, as there is in the case when the
sides are straight; but there seems to be no straightforward way
of establishing this.
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where one side is a straight line and the other is a parabola,

e.g., y=O and y=ax 2  Here the intersection points satisfy

x0-xl 2 x0-2
0 -h' (x) + h(x0 ) and ax2 - 2 + h(xh'(xh')(0 02 + hxx0)

Thus X = x 0 +h(x0 )h' (x 0 )

-l±vl+4ah ' (x 0 ) (x 0 +h(x 0 )h' (x 0 ))
and x = 2ah' (x0)

X +X2
Substituting in x0  1 2 gives

-1±l+4ah' (x 0 ) (x0 +h(x0 )h' (x 0 ))
x= h(x 0 )h' (x 0 ) +2h'x)0 0 02ah' (x 0 )

so that h satisfies the differential equation

-i±Vl+4ay' (x+yy')
x = yy' + 2ay'

Transposing and squaring gives
20

l+4ay'(x+yy') = [l+2ay'(x-yy')]
2

= l+4ay'(x-yy')+4a 2y' 2(x-yy' ) 2

Thus

8ayy 2 = 4a 2 y, 2 Cx-yy, )2

2
or 2y = a(x-yy')

where we can cancel y,2 since y is not a constant.

It is not hard to see that this differential equation has no

polynomial solution. Note first that it has no linear solution;

in fact, if y=Ax+B were a solution, we would have

2(Ax+B) = a(x-A(Ax+B))
2

This must vanish identically in x; hen 2 the coefficient of each

power of x must vanish. Collecting coefficients, we have



2 22 2 22_a(l-A2)2x - 2A(l+a(l-A )B)x + aA B -2B 0

In order for the coefficient of x to vanish, we must have

A=tl; but then the coefficient of x does not vanish, contra-

diction. Now suppose the equation has a solution of degree
exactly n>l, say y=Axn+(terms of lower degree), where A0.

2n(n-l) 2

Then the coefficient of x is naA and since this must

vanish, we must have A=0, contradiction. In summary, we have

proved

Proposition 5.4. If one side of a Brooks ribbon is a straight

line and the other is a parabola, the spine is not a polynomial.

It would be useful to obtain explicit solutions for the spine

when the sides are polynomials of low degree, but the differen-

tial equation of the spine is extremely complicated when both

sides are nonstraight -- e.g., even when they are both circular

arcs.

0
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6. The equal angle case ("Brady ribbons")

Finally, we consider L-ribbons satisfying the condition

that the generator always makes equal angles with the sides

of the ribbon. We call such ribbons "Brady ribbons."

Note first that it is not obvious how to generate a Brady

ribbon from an arbitrary given spine. Let the equation of the

spine be y=h(x), and let the generator centered at point

(x0 ,y0 ) of the spine have half-length r0 and slope tan .

Then the endpoints of the generator are at (x0 ±r0cos9 0,

Y0:r 0sin0 
) , where y0 =h(x 0). The loci of the endpoints are

the sides of the ribbon; thus the slopes of the sides at the

endpoints are

d(yo r0 sin%0) y±r~sine0 ±r0 ecos0

d(x0 ±r0 cose0) l±r'cose~r0 esinO0

If we call these slopes tan ei and tan 62F respectively, then
1 +2

the equal-angle condition means that we must have 12 - 0*

In principle, we can solve this equation to find pairs of func-

tions r0 and 80 that generate Brady ribbons. In oractice, it

may be hard to solve the equations in general: hut in anx case,

Brady's definition was not intended to be generative.

The situation is somewhat better as regards recovery. To

begin with, we have

Proposition 6.1. If a Brady ribbon has parallel straight sides,

its spine must be a segment of the straight line parallel to

the sides and midway between them, but its generators can make

arbitrary angles with the spine.

*-



Proof: Any line that intersects two parallel lines makes

equal angles with them, and its midpoint is halfway between

them. As we saw in Figure 13, there are many ways of defin-

ing the generators so that no two of them intersect. 1

Proposition 6.2. If a Brady ribbon has nonparallel straight

sides, its spine must be a segment of the angle bisector of

the sides, and its generators must be perpendicular to the

spine.

Proof: Let the sides have slopes tane 1 and tane2' where 61 42.

An arbitrary line of slope tane makes angles e-61 and a2-

with the sides. Thus there is only one slope for which these
1 2

angles are equal, namely tane where a= 12 2 Thus all genera-

tors must be parallel, and evidently they are perpendicular to

the angle bisector.

Propositions 6.1 and 6.2 show that if a Brady ribbon has straight

sides, its axis is uniquely determined, but its generators are

not uniquely determined if the sides are parallel. Note that

the situation here is exactly the reverse of that for Brooks

ribbons with straight sides; if the sides are parallel, there is

only one way of generating a Brooks ribbon (Proposition 5.1),

but if they are nonparallel there are many ways (Theorem 5.2)

Proposition 6.2 also holds if just one side is straight.

In fact, we have

I

• - . " ' " i "



Theorem 6.3. If a Brady ribbon has just one straight side,

its spine and generators are uniquely determined.

Proof: Let the straight side have slope tane l , let P be any

point on the other side, and let the tangent at P have slope

2, where a2 el. Just as in the proof of Proposition 6.2,

there is a unique line through P that makes equal angles with

the straight side and with the tangent at P -- namely, the line
1 +ae91+2

having slope tan6, where 6= 2 Thus at every P for which

2 I , the generator is uniquely determined. Moreover, at any

P for whicha2= e, we must take the generator perpendicular to

the two sides in order to insure continuity of its slope. Thus

all the generators are uniquely determined, and the spine is

the locus of their midpoints. I

For arbitrarily shaped sides s and t, let P-s. If there

exists QEt such that the normals to s at P and to s' at Q are

parallel, then the line segment PQ is a generator, since it makes

equal angles with the normals; and if there exists more than one

such Q, there is more than one generator with endpoint P. On

tne :ther hand, as Figure 20 shows, the normals at P and Q need

not be parallel in order for PQ to be a generator. Thus we can-

not say anything simple about uniqueness in the general case.

Note that if s and t are circular arcs, it is easy to construct

* parallel pairs of normals. We simply draw the line AB joining

the centers of the circles (see Figure 21); if the normal at PEs

makes angle - with AB, we let Q be the point of t at which the

normal makes the same angle with AB, and PQ is then a generator,

since the normals at P and Q are parallel. If the circles are

0
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facing each another, this is not a useful construction, since

the PQ's must cross one another, as illustrated in Figure 21a.

However, if the circles are facing the same way, the construc-

tion yields a non-selfintersecting Brady ribbon, as illustrated

in Figure 21b, and as also discussed by Brady.

A variant of the construction in Figure 21b can be used to

show that thick Brady ribbons can make sharp turns. In Figure

21b, if t is very tiny, the generators PQ will have approximately

the same length; hence the locus of their centers, i.e., the

spine, is approximately a circular arc parallel to s and with

about half its radius. Thus the ribbon is more than twice as

thick as the radius of curvature of its spine, but it is still

able to turn without intersecting itself. This example also

shows that there exist Brady ribbons that are not Brooks ribbons.

Finally, we show that every Blum ribbon is a Brady ribbon.

Indeed, referring to the last paragraph of Section 3, triangle

OPP' is isosceles; hence PP' makes equal angles with the

normals OP and OP' to the sides of the ribbon. Thus PP' is

a Brady generator, and the locus of its midpoint is a Brady

spine. (Note that this spine is not necessarily the same

*as the Blum spine, which is the locus of 0.) If R is a Blum

rihbon, we can recover its Blum aenerators as in Section 3,

* giving us the pairs (P,P'); this then gives us a set of Brady

generators for R, namely the segments PP'. (There is no

guarantee, however, that this set is unique.)



7. Some addenda and special cases

In the last two sections we have ignored what happens at

the ends of a ribbon. By definition, the ends of a Blum

ribbon must be circular arcs, while those of a Brooks or Brady

ribbon must be straight. In the case of L-ribbons (i.e.,

ribbons having line segment generators) we can "shape" the ends

by attaching to each end what we shall call a "generalized

sector." This is simply a pencil of ray segments emanating from

each endpoint of the segment over a 1800 sector (in the half-

place bounded by the last generator of the ribbon and not con-

taining the adjacent generators). The lengths of the ray segments

can vary in any desired way. In particular, if we make the seg-

ments all equal, the generalized sector becomes a semidisk, so

that the ends of the ribbon are rounded. Another way of shaping

the ends of an L-ribbon is to attach to each end a "generalized

wedge"; this is a pencil of ray segments emanating from the end-

point of one of the sides, and covering an angular sector bounded

on one side by the last generator of the ribbon. Generalized

wedges would be a natural way of completing ribbons such as that

shown in Figure 16. Note that in both generalized sectors and

generalized wedges, the generating ray segments all have one end-

point in common, rather than being disjoint as in the ribbon case.

If we do not ignore what happens at the ends, our three spe-

cial classes of ribbons (Blum, Brooks, and Brady) are all incom-

parable. Blum ribbons have rounded ends, while Brooks and Brady

ribbons have flat ends. There exist Brady ribbons that are not

Brooks ribbons, as we saw at the end of Section 6. Conversely,



a Brooks ribbon such as that in Figure 19 is not a Brady ribbon;

Brady's method can generate straight-sided ribbons, but the

sides must be symmetric around their angle bisector.

Even if we ignore the ends, there are many types of Brooks

or Brady ribbons that are not Blum ribbons -- e.g., Figure 10a;

and there are Brady ribbons that are not Brooks or Blum ribbons,

as we saw at the end of Section 6. The remaining questions are:

Ignoring the ends, is every Blum ribbon a Brooks ribbon?

Is every Brooks ribbon a Brady ribbon? We will not settle these

questions here in general, but we will settle them in the case

where the spine is straight.

Proposition 7.1. If the spine is straight, and we ignore the

ends, every Blum ribbon is a Brooks ribbon.

Proof: Let R be a Blum ribbon whose spine lies along the x

axis, and let 0 be any point on the spine. Since R is a union

of disks centered on the x-axis, it is clear that the vertical

line through 0 can only meet R in a single connected segment.

Let P and Q be the border points of R directly above and below

Q. Any disk centered on the x axis that contains P also con-

tains Q, and vice versa. Hence the (unique) generator of R

that touches bR at P also touches it at Q, so that P and Q are

equidistant from the x axis. At each point 0 of the spine, PQ
0

is a Brooks generator, since it is perpendicular to the spine

and 0 is its midpoint. The Brooks ribbon generated by this

set of generators is evidently R (except at the ends).

S i,-,m " . .



Proposition 7.2. If the spine is straight, every Brooks ribbon

is a Brady ribbon.

Proof: Let R be a Brooks ribbon with a straight spine, say

lying along the x axis. Let G(x) be the generator of R at x

(so that G(x) is a vertical line segment with x as its mid-

point), and let r(x) be the half-length of G(x). The slopes

of the sides of R at the endpoints of G(x) are evidently ±r' (x);

hence the sides make equal angles with G(x), so that R is a

Brady ribbon. 'I

Even if the spine is straight, a Brady ribbon need not be a

Brooks ribbon; see Figure 10b. Similarly, a Brooks ribbon need

not be a Blum ribbon (Figure 10a). Thus for straight spines,

ignoring the ends, the three classes of ribbons are strictly

nested: Blum C Brooks c Brady.

* p
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8. Concluding remarks

We have discussed at some length various ways of defining

"generalized ribbons." In particular, we have considered three

specific models, due to Blum, Brooks, and Brady, respectively.

Blum's model seems to have the least generative capacity, but

it has unique recoverability. Blum ribbons are limited in their

flexibility (e.g., in terms of turn radius), but they are also

limited in their ability to generate non-ribbon like shapes.

Brady's model has somewhat more generative capacity than Brooks',

and its recoverability properties also seem to be better. Its

main disadvantage is that generation is not a straightforward

process; it is not easy to specify how to define the set of

generators so as to insure that they satisfy Brady's equal angle

condition.

It would be of interest to generalize the results of this

paper to three dimensions by defining and comparing various

classes of generalized cylinders (or cones). In 3D the spine 0

is a space curve (or rather arc). The 3D analog of Blum's model

uses a ball (i.e., a solid sphere) as generator, while the ana-

logs of the 2D schemes based on line segment generators use a

planar figure (such as a disk!) as generator. Here we can consi-

der a Brooks-like restriction in which the disk is required to

remain at a fixed angle to the spine; it is less obvious how to

define a 3D analog of Brady's equal-angles restriction. Note that

if we use a line segment as generator in 3D, and allow its length

and spatial orientation to vary, we obtain generalized "space

ribbons" rather than cylinders or cones.
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(b)

Figure 5. A thick Blum ribbon can have points of high
negative curvature on its border (b), but
not points of high positive curvature (a).

0 Figure 6. When the spine is curved, disks that just
touch do not touch on the spine.
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Figure 7. This example violates non self inter-
section and also nonmaximality.

Figure 8. This example violates nonselfinter-
section but not nonmaximality.
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Figure 13. L-ribbons are highly ambiguous; a
C given shape can be generated in

many different ways.
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Figure 14. The thickness of a Brooks ribbon
cannot exceed twice the radius
of curvature of its spine.
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Figure 15. If a Brooks ribbon has parallel
straight sides, its spine must
be parallel to them and midway
between them.
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Figure 16. A parallelogram is not a Brooks
ribbon.



* Figure 17. A Brooks ribbon with straight sides.

- - - -y=g(x)
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Figure 18. Deriving the differential equation
of the spine y=h(x).
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Figure 19. A Brooks ribbon with straight sidesS
need not have a straight spine.



p-p

,* I
S I j

I '
p e I

r-.-

0

* Figure 20. Brady generators don't require
parallel normals; PQ' and PQ
are both generators.

0l

,-0



(a)

A

- "s

l

I!
/

t- Q

B

(b)

B

/

tt

p /, /

/P, ,

Figure 21. Pairs of circular arcs sometimes
define Brady ribbons.
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